PMT

Physics 2 Summer 2015 Higher Tier

	nber	0.1			Α	A (NI (1	
FT	ΗT	Sub-section Mark		Mark	Answer	Accept	Neutral answer	Do not accept
	1	(a)	(i)	2	Uranium [nucleus] / it absorbs neutron[s] (1) splits into <u>2</u> [smaller] nuclei <u>and neutrons [are released]</u> (1)	Atoms Neutron capture Named elements		Force of impact shatters nucleus. Don't accept collides.
			(ii)	2	Slows down the neutrons (1) so they can be absorbed / captured <u>by uranium</u> [nuclei] (1) The 2 nd mark can only be awarded if it is linked to the 1 st mark.	For 2 nd mark: Split <u>uranium</u> nuclei or they cause fission of <u>uranium</u> or the reaction of uranium		
			(iii)	2	Fewer or no neutrons absorbed (1) so increase [in rate of] fission [of uranium nuclei] (1) The 2 nd mark can only be awarded if it is linked to the 1 st mark.	For 1 st mark: So more neutrons available for fission		Taken out / removed / more energy released
		(b)	(i)	3	Ticks in the 2 nd , 3 rd and 4 th boxesA nucleus of U-230 least number of neutrons (1)✓A nucleus of U-235 contains 143 neutrons (1)✓A nucleus of U-234 contains 92 protons (1)			Extra tick attracts -1
			(ii)	2	234 (1) ²³⁴ ₉₂ U (1) as shown here			
		Tota	Mark	11				

Sub-	(i)	n Mark 2	Answer No credit is given for just naming the radioisotope Astatine Alpha particles highly ionising or easily absorbed [by cancer cells] or would not penetrate beyond the tumour [to affect healthy cells] (1) It decays [to a safe level] quickly or equivalent (1) Alternative solution:	Accept Alpha is not able to spread far [The source] won't last long in the body	Neutral answer	Do not accept Answers for any other radioisotope Attacks / kills the cancer cells the best. It is highly
(a)	(i)	2	Astatine Alpha particles highly ionising or easily absorbed [by cancer cells] or would not penetrate beyond the tumour [to affect healthy cells] (1) It decays [to a safe level] quickly or equivalent (1)	to spread far [The source] won't last long in		other radioisotope Attacks / kills the cancer cells the
			Tellurium Beta penetrates all of the tumour (1) It decays [to a safe level] quickly or equivalent (1)			ionising. Any statement implying that it leaves the body quickly / the half-life is short.
	(ii)	2	Cobalt / Caesium Beta / gamma will penetrate the <u>packaging/box</u> or kills bacteria (1) It won't need replacing for a long time / it lasts a long time (1)			It has a long half- life
(b)	(i)	1	5			
	(ii)	2	288 – 144 – 72 – 36 – 18 - 9 Process of halving from 288 (1) 5 times to arrive at 9 (1) ecf	Answer only of 9 gets 2 marks		An incorrect answer with no workings shown <u>e.g. 18</u> except for 4 half-lives in (b)(i) which gets 2 marks
		(b) (i)	(b) (i) 1 (ii) 2	(ii)2Beta / gamma will penetrate the packaging/box or kills bacteria (1) It won't need replacing for a long time / it lasts a long time (1)(b)(i)15(b)(i)15(ii)2288 - 144 - 72 - 36 - 18 - 9 Process of halving from 288 (1) 5 times to arrive at 9 (1) ecf	(ii)2Beta / gamma will penetrate the packaging/box or kills bacteria (1) It won't need replacing for a long time / it lasts a long time (1)(b)(i)15(b)(i)15(ii)2 $288 - 144 - 72 - 36 - 18 - 9$ Process of halving from 288 (1) 5 times to arrive at 9 (1) ecfAnswer only of 9 gets 2 marks	(ii) 2 Beta / gamma will penetrate the packaging/box or kills bacteria (1) It won't need replacing for a long time / it lasts a long time (1) (b) (i) 1 5 (b) (i) 1 5 (ii) 2 288 - 144 - 72 - 36 - 18 - 9 Process of halving from 288 (1) 5 times to arrive at 9 (1) ecf Answer only of 9 gets 2 marks

- •	estion mber						
FT	HT	Sub-section Mark		Answer	Accept	Neutral answer	Do not accept
	3	6	6	 Indicative content: If the vehicle is travelling faster then the thinking distance increased. This means that the overall stopping distance more slowly). If the brakes are worn (or poor road surfathe braking distance is increased. This again leads to all brakes). If the driver has drunk alcohol or is tired the regreater. Although the braking distance is unaffected the 5-6 marks The candidate constructs an articulate, integrated accound indicative content, which shows sequential reasoning. The reandidate spelling, punctuation and grammar. 	e is greater (or the o ace conditions) the t n increased stoppin action time is bigge e overall stopping di unt correctly linking the answer fully add	converse for a vehic hinking distance is u g distance (or the co r and so the thinking stance is greater. relevant points, suc lresses the question	e travelling inaffected but onverse for new distance is n as those in the with no
	 3-4 marks The candidate constructs an account correctly linking some relevant points, content, showing some reasoning. The answer addresses the question with uses mainly appropriate scientific terminology and some accurate spelling, 1-2 marks The candidate makes some relevant points, such as those in the indicative 						he candidate mmar.
		Total Ma	rk 6	The answer addresses the question with significant omit terminology and inaccuracies in spelling, punctuation ar 0 marks The candidate does not make any attempt or give a rele	ssions. The candida nd grammar.	ate uses limited scie	0

Question Number							
FT	HT	Sub-section	Mark	Answer	Accept	Neutral answer	Do not accept
	4	(i)	2	Repeat <u>the</u> experiment / gather more data (1) and if the current values or results are <u>close to the</u> <u>first set</u> of readings [the results are repeatable] (1) The 2nd mark can only be awarded if it is linked to the 1st mark.	Or opposite comment		
		(ii)	3	As the length doubles the current is halved (1) <i>V</i> is constant (1) so the resistance doubles (1) Alternative solution: For a length of e.g. 10 cm, $R = 2 \Omega$ and for a length of e.g. 30 cm, $R = 6 \Omega$ (2) therefore tripling <i>l</i> , triples <i>R</i> (1) For 2 marks, the first and third statements need to be linked	When the length doubles the current is halved (1) since resistance is inversely proportional to current this agrees with the statement (1)		As length increases, current decreases so resistance increases
		(iii)	3	Points plotted within $\pm \frac{1}{2}$ small square division (2) (- 1 mark for each incorrect plot to a maximum of 2 marks) Curved line of best fit \pm one small square division of each point within the range 20 - 75 cm (1)			Line joined dot to dot, whispy lines, double lines
		(iv)	2	Award 2 marks for <u>inversely</u> proportional Award 1 mark for as the length increases current decreases	If length doubles, current is halved gets 2 marks Decreases at a decreasing rate gets 1 mark		Directly proportional. In a non-linear way for the 2 nd mark

	stion nber]						
FT	HT	Sub-section Mark		n Mark	Answer	Accept	Neutral answer	Do not accept
			(v)	4	0.2 A identified from the graph (1) will be dependent on their graph line $R = \frac{V}{I} = \frac{1.8}{0.2} = 9 [\Omega] (1) \text{ ecf on } 0.2 \text{ A}$ So $\frac{9}{45} = 0.2 \Omega/\text{cm} (1) \text{ ecf on } 9 [\Omega]$ Yes or No must be consistent with their answer (1) Alternative solution: $V = 0.2 (1) \times 0.2 = 0.04 \text{ V cm}^{-1} (1)$ $0.04 \times 45 \text{ cm} = 1.8 \text{ V} (1)$ So correct V (1) Alternative solution: $R = 0.2 (1) \times 45 = 9 \Omega (1)$ $I = \frac{V}{R} = \frac{1.8}{9} = 0.2 \text{ A} (1)$ So correct value for I (1)	0.2 A identified from the graph (1) will be dependent on their graph line Resistance = $0.2 \times 45 =$ 9Ω (1) $V = IR = 0.2 \times 9 =$ 1.8 V (1) Yes because that was the voltage used (1)		$V = IR = 0.2 \times 45 = 9 \Omega$
		Tota	al Mark	14				

	stion nber							
FT	ΗT	Sub	-section	Mark	Answer	Accept	Neutral answer	Do not accept
	5	(a)	(i)	2	$P = VI = 120 \times 5 (1) = 600 [W] (1)$			
			(ii)	1	9 000 [J]	9 if k placed before J		9 kJ if given J not crossed out
			(iii)	2	GPE = mgh = 50 × 10 × 14 (1) = 7 000 [J] (1)			
			(iv)	1	Lost as heat / due to friction / energy to lift blocks and hook			Lost to atmosphere / energy wasted / energy lost / air resistance
		(b)	(i)	2	50 (1) × 10 = 500 [N] (1)	$F = \frac{W}{d} = \frac{7\ 000(1)}{14} = 500\ [N]\ (1)$		$ \frac{9000}{14} $ Substitution of 50 into the PE equation
			(ii)	2	Resultant / unbalanced force (1) so velocity increases / object accelerates (1) The 2 nd mark can only be awarded if it is linked to the 1 st mark.			Statements of Newton's laws Reference to air resistance
			(iii)	3	Change in GPE = gain in KE (1) KE = $\frac{1}{2} mv^2 \Rightarrow v^2 = \frac{2\text{KE}}{m}$ (1 rearranged) ecf from (a)(iii) $\frac{2 \times 7\ 000}{50} = 280 \ [\text{m}^2/\text{s}^2] \Rightarrow v = 16.7 \ [\text{m/s}]$ (1)	Answer of 17 [m/s]		7 000 substituted into any equation other than an energy one
		Tota	l Mark	13		1		

Que: Num	stion							
FT	TH	Sub	-sectio	n Mark	Answer	Accept	Neutral answer	Do not accept
	6	(a)		3	Area: $(\frac{1}{2} \times (60 \times 30)) + (60 \times 35) + (\frac{1}{2} \times (60 \times 15))$ So: $(900 + 450) (1)$ - triangles + 2 100 (1) - rectangle = 3 450 [m] (1) Alternative solution: Area of a trapezium = $\frac{1}{2} \times (80 + 35) (1)$ $\times 60 (1)$ = 3 450 [m] (1)			
				6	 Indicative content: In the first 30 s there is a resultant force acting in the for Calculations to show the acceleration is 2 m/s² and the constant so the resultant force is zero. For the last 15 s causing the passenger to decelerate to zero. Calculatio 280 N. 5-6 marks The candidate constructs an articulate, integrated account the indicative content, which shows sequential reasoning irrelevant inclusions or significant omissions. The candid accurate spelling, punctuation and grammar. 3-4 marks The candidate constructs an account correctly linking secontent, showing some reasoning. The answer address uses mainly appropriate scientific terminology and some 1-2 marks The candidate makes some relevant points, such as the reasoning. The answer addresses the question with sig scientific terminology and inaccuracies in spelling, punct 0 marks The candidate does not make any attempt or give a relevant 	force is 140 N. Betw the there is a result ns to show the dece unt correctly linking g. The answer fully date uses appropria ome relevant points tes the question with e accurate spelling, ose in the indicative nificant omissions. T	een 30 and 65 s the ant force opposite/b eleration is 4 m/s ² so relevant points, suc addresses the ques te scientific termino , such as those in th some omissions. T punctuation and gra content, showing lir The candidate uses ar.	e speed is ackward the force is h as those in stion with no logy and he indicative the candidate ammar.
		Tota	al Mark	9	The summare does not make any attempt of give a rele			
	l							

PMT